X^2+4x=(2x+3)(x-2)

Simple and best practice solution for X^2+4x=(2x+3)(x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+4x=(2x+3)(x-2) equation:



X^2+4X=(2X+3)(X-2)
We move all terms to the left:
X^2+4X-((2X+3)(X-2))=0
We multiply parentheses ..
X^2-((+2X^2-4X+3X-6))+4X=0
We calculate terms in parentheses: -((+2X^2-4X+3X-6)), so:
(+2X^2-4X+3X-6)
We get rid of parentheses
2X^2-4X+3X-6
We add all the numbers together, and all the variables
2X^2-1X-6
Back to the equation:
-(2X^2-1X-6)
We add all the numbers together, and all the variables
X^2+4X-(2X^2-1X-6)=0
We get rid of parentheses
X^2-2X^2+4X+1X+6=0
We add all the numbers together, and all the variables
-1X^2+5X+6=0
a = -1; b = 5; c = +6;
Δ = b2-4ac
Δ = 52-4·(-1)·6
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-7}{2*-1}=\frac{-12}{-2} =+6 $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+7}{2*-1}=\frac{2}{-2} =-1 $

See similar equations:

| y=1-(-3) | | 6(x+13)=6x+38 | | 75=39+3x | | x-(x/4)=(2x-1/3) | | 2+0.1x=25 | | 9x+4=-2x+4-4x | | 6x+13=-6x-17 | | x-(x74)=(2x-1/3) | | 5x+4(1-x)=1 | | m=4m+14 | | 5x+4(1=x)=1 | | 9x=-2x-8 | | b/1+1=3 | | 7+x/3=28 | | 5x-16=6x+5 | | 5x-11=9x+12 | | 12x3=-51 | | 2.55d=1.85 | | T=0.15(d-7,550)+755 | | x-(x/4)=2x-1/3 | | 1/4(8t-7)=7/4t-t+7/8 | | 2x2-3x-65=0. | | 9x-14=7x+11 | | n÷6=5/8 | | 8x-5=3x+40 | | (9-2x)^2=40 | | x-3+11=27 | | x/4-15=45 | | 5(x-11)=100 | | 0.25x+30=59 | | 21x+67=151 | | 2.4+3y=3.6 |

Equations solver categories